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A new technique based on the Priifer transformations is proposed. This technique is 
illustrated using several examples of Sturm-Liouville systems offering varying degrees 
of computational difficulty. For some of the examples, other techniques have been 
used to calculate eigenvalues, and in these cases, results obtained are compared. The 
technique appears capable of generalization to multiparameter systems of differential 
equations. 

1. INTR~DUOTION 

Sturm-Liouville systems arise as the mathematical formulation of boundary value 
problems. Typical examples are a vibrating string with elastically held ends and 
vibrating elliptic membrane clamped at the edge. The former problem may be 
formulated immediately as a Sturm-Liouville problem, while the latter is a two- 
dimensional problem, which may be reduced to two ordinary differential equations, 
one of which is associated with a Sturm-Liouville system. 

The technique, known as separation of variables, used in the latter problem, 
may also be used for problems in higher dimensions. If one attempts to solve an 
n-dimensional problem, then one would expect to obtain n-differential equations 
with eigenvalues occurring as (n - 1) separation constants. A more general 
problem of this type, the multiparameter problem for ordinary differential 
equations, has been considered from a theoretical viewpoint by several authors 
(for example [2, 111) while eigenvalues have been estimated using a numerical 
technique [8]. However the numerical approach has only been successful for 
equations involving two parameters. When one proceeds beyond two parameters, 
the existing techniques do not appear to be useful. 

It is in this context that an alternative method for efficient estimation of eigen- 
values of Sturm-Liouville systems is proposed. However, the technique described 
here as applications to Sturm-Liouville systems as it appears to be an efficient 
way of treating the difficult problem of determining the eigenvalues of a system, 
which involves a large parameter and a turning-point. It also appears to be useful 
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for problems involving moderately large parameters where asymptotic series 
may require many terms in order to be of the required degree of accuracy. 

To illustrate the range of applicability of the methods, eight tables of eigenvalues 
are given. In these tables, the computation times quoted are those taken by the 
I.C.L. System 4/70 computer at the University of Aberdeen. The results appearing 
in these tables were obtained using a sixth-order Runge-Kutta process. 

2. STURM-LIOUVILLE SYSTEMS 

The general form of a Sturm-Liouville system may be written as 

g (P(X) -g) + @p(x) - q(x)) w(x) = 0, 

sin ocw’(u) - cos aw(a) = sin /3w’(b) - cos /3u@) = 0. 

If the quantities in (2.1) are subject to the following restrictions: 

(2.1) 

(i) [a, b] is a finite real interval, 

(ii) p and q are continuous and p is continuously differentiable on [a, b], 

(iii) p(x) and p(x) are positive, Vx E [a, b], 

(iv) 0 < 01 < 7r, 0 < /3 < r, 

then (2.1) is a regular Sturm-Liouville system. 
The theory of eigenfunctions and eigenvalues of regular Sturm-Liouville systems 

is well known [9, p. 3731. The following results for such systems are required: 

(a) There exists a unique value of h such that the system (2.1) admits a 
solution having a prescribed number of zeros in (a, b). 

(b) If the set of eigenvalues is denoted by (hi}, the suffix denoting the number 
of zeros in (a, b) of the corresponding eigenfunction, then j > i implies that 
Aj > Ai . 

(c) Let q = min{q(x): x E [a, b]}, and Q = max{q(x): x E [a, b]). 

Let the system (2.1) with q(x) replaced by q have eigenvalues pi and the system 
(2.1) with q(x) replaced by Q have eigenvalues Q . Then 

pi ,( hi < qi . 

It is not necessary to consider the most general form of the Sturm-Liouville 
system. We shall use the following form of (2.1), 

WV + {+(x> - q(x)) w(x) = 0, 
sin NW’(U) - cos INV(U) = sin /3w’(b) - cos /3w(b) = 0. (2.2) 
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The differential equation in (2.2) is of similar form to one of the n equations in 
the multiparameter problem. 

There is no loss of generality in considering (2.2) since, for regular Sturm- 
Liouville systems, (2.1) may be reduced to the even simpler form. 

(d2u/dt2) + {A - d(t)} 24 = 0, (2.3) 

with associated boundary conditions, by the Liouville substitution [9, p. 3401 

w = 4(P(4 p(w”, t = (p(x)/p(x))“” dx. s 

The eigenvalues of (2.3) are identical to those of (2.1). 

3. PREFER SUBSTITUTIONS 

There are classically two variants of the Priifer substitution. The purpose of 
the substitutions is to transform the second-order equation 

WV + Q(x) w(x) = 0 

to two first-order equations, one of which is independent of the solution of the other 
equation. The eigenvalue may then be obtained from this first-order equation. 

To apply the Priifer substitution, introduce I(X), 0(x) such that 

w’(x) = r(x) cos e(x), w(x) = r(x) sin e(x). 

The resulting first-order differential equations obtained from the original problem 
are 

dtl/dx = Q(X) sin2 0 + cos2 6, (3.0 
dr/dx = (1/2)[1 - Q(X)] r sin 20. (3.2) 

For a regular Sturm-Liouville system, a typical set of solutions, for various 
values of A, of (3.1) with initial condition 

ecu) = a 

would be as shown in Fig. 1. 
The boundary conditions of (2.2) determine the values of 0 at the end points, i.e., 

ecu) = a, e(b) = p + mrr. (3.3) 

These boundary conditions for 6 ensure that the solution of the problem (2.2) 
has m zeros in (a, b). 
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FIGURE 1 

While the Priifer method offers a simple way of obtaining eigenvalues [3], it is 
not always the most efficient way. In particular, if Q(x) is large the truncation 
error occurring in any method of solution for ordinary differential equations may 
be large and the results consequently not as accurate as the order of the method 
indicates. 

A method that is useful for large values of Q(x) is the modified Priifer method 
[9, p. 4021, which has been used by Fix [6] in his analytic investigation of eigen- 
values of differential equations corresponding to large numbers of zeros. Tntro- 
ducing R(x), 4(x) defined by, 

w’(x) = R(x){Q(x)}‘~” cos $, w(x) = (R(x)/{Q(x)}~/~) sin 4 (3.4a,b) 

leads to 
d+/dx = [Q(x)]~/~ + (Q’/4Q) sin 24, (3.5) 

and 
dRfdx = -(RQ’/4Q) cos 24. (3.6) 

The boundary conditions are not immediately obvious for the modified Priifer 
equation, but they may be obtained by investigating the relation between Priifer 
and modified Pri.ifer variables as defined above. Observe that one may only apply 
the modified Prtifer method in [a, b] if Q(x) > 0, Vx E [a, b]. Comparing the 
definitions of the respective variables in the substitutions 

r(x) cos 6(x) = R(x){Q(x)}~/~ cos 4(x), 

r(x) sin e(x) = R(x){Q(x))-~/~ sin #(a$, 

so that 
tan 0(x) = tan +(x)/[Q(~)]l/~. (3.7) 
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Thus, the zeros and singularities of tan f3(x) and tan 4(x) occur for the same 
values of x, and we may deduce that 

I e(x) - WI < 742. 

Transforming (3.3) using (3.7), leads to 

and 

Z = tan-l{tan ol[Q(u)]l/“>, if 01 < rr/2, 
= 7~ + tan-l{tan CX.[Q(~)]~/~), if 01 > 7~12, 

(3.8a) 

/!I = mn- + tan-l{tan fi[Q(!~)]l/~}, if /3 < VT/~, 
= (m + 1) rr + tan-l{tan fl[Q(b)]1/2}, if /3 > n/2, 

(3.8b) 

where 
--r/2 < tan-r x < ~12. 

Equation (3.5) used in conjunction with Eqs. (3.8a, b) produces a powerful 
method for the solution of problems for which Q(x) is bounded below by a positive 
constant. For highly oscillatory solutions, the positive constant is large and 
Eq. (3.5) leads to steadily increasing solutions, which do not suffer from the usual 
inaccuracies that affect methods for highly oscillatory solutions of Sturm-Liouville 
systems. 

4. DETAILS OF THE NUMERICAL TECHNIQUE 

As Eq. (3.7) facilitates the transformation from Prtifer to modified Priifer 
phase angles, provided, of course, that one does not attempt to transform when 
Q(x) = 0, it is possible to illustrate the numerical method using the Priifer phase 
angle only. 

The regular Sturm-Liouville system (2.2) may be cast as the initial value problem 

O’(x) = cos2 0 + {hp(x) - q(x)} sin2 13, 
ecu) = o1. (4.1) 

The right-hand boundary condition has yet to be imposed on this system. For 
a fixed value of h, it is possible to solve (4.1) as an initial value problem using one 
of many known techniques for this type of differential equation, to obtain the 
value of 8 at b. This value will clearly depend on both b and h so that we denote 
it by c9(b; A). Hence, we can construct a functionf: R + R, defined byf(X) = 8(b; A). 
For a given value of /I, we can now define the functionf, by 

.m) = .m - B- (4.2) 



386 B. A. HARGRAVE 

If we are able to find a value of h such that 

.&I@) = 0, (4.3) 

then this is the eigenvalue of the system (2.2). The value of X is unique by result (a) 
for regular Sturm-Liouville systems and in fact f0 is an increasing function of h. 
For higher eigenvalues we have only to investigate the unique zero of each of the 
functions fm defined by 

fm0) = f@) - @ + mn>* (4.4) 

The techniques used for the determination of h are iterative. From property (c) 
of Section 2, a priori bounds are known for each eigenvalue so that Miiller’s 
method [5, p. 751 is particularly suitable for this type of equation. 

Earlier in this section, techniques for initial value problems were mentioned. 
A comprehensive description of each type of method and a comparison of these 
methods may be found in [lo]. A sixth-order Runge-Kutta process was found to be 
more efficient than other methods when applied to the problems in Sections 5-7. 
By using the modified Prlifer substitution, it is possible to treat the case of large 
positive {&-J(X) - q(x)), provided that the derivative of this function is not 
appreciably larger than the function itself. However, if {X,(x) - q((x)} is large 
and negative, one uses the Pri.ifer method (an analog of the modified Priifer 
equation may be formulated, but this involves a sin h 2$ that dominates the right- 
hand side). 

In the following sections, some general problems are solved and details of 
peculiar features of each problem are discussed. 

5. PROBLEMS FOR WHICH Q(x)> 0 

This type of problem occurs when one investigates a Sturm-Liouville system 
exhibiting rapid oscillations. If there are sufficiently many oscillations to ensure 
that 

+c4 - 4(x)> 0, vx E k4 bl, 
the modified Prtifer transformation is applied to (2.2) and the boundary conditions 
are transformed to the modified Prtifer phase. From property (b) of regular Sturm- 
Liouville systems, it is clear that, as q(x) is bounded on [a, b], such systems possess 
an infmite number of eigenvalues that may be determined using this approach. 

The initial value problem is 

(5.1) 

where C% is given by (3.8a). 
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In this case, one defines fm in terms of the modified Prtifer phase 

fm@> = 4@; a - (P + mn), 
where /? is given by (3.8b). 

For this problem, it is possible to define a second-order iteration by choosing 
an initial value h, and using the result 

fm'(X) -h (1 /2h19 jb [p(t)]lie dt, (5.2) a 

valid for large values of X. This result is obtained by integrating 

d+/dx -h [hp(~)]l/~, 

with respect to X, and then differentiating with respect to X. Convergence for this 
case is faster than for any of the other cases considered here. 

If, as in many problems of this type, p(x) = c, where c is a constant, one may 
choose the step-size h to be larger than is usual for initial value problems, while 
the results remain as accurate. 

The results given in this section may be compared with results obtained by 
asymptotic methods applied to Sturm-Liouville systems. The asymptotic methods 
often involve tedious calculations to obtain high-order accuracy, which may be 
achieved from the modified Prtifer method by altering the step-size. For moderately 
large values of X, many terms of the asymptotic series are required, and the method 
used here is more efficient. 

Numerical methods are also available for this type of problem. However, only 
Rayleigh-Ritz methods appear to be of comparable accuracy for moderately 
large values of the eigenvalue X. For highly oscillatory solutions, even Rayleigh- 
Ritz methods lose accuracy, while the method used here retains the same number 
of decimal places as X increases. 

As an illustration of the above remarks, eigenvalues of Sturm-Liouville systems 
computed by means of (5.1) and (5.2), are presented in Tables I, II, and III. The 
first two tables indicate results for eigenvalue problems associated with Weber’s 
equation 

?d + {A - x”} w = 0. (5.3) 

Two problems have been considered, 

(i) w(O) = w(l) = 0, 
(ii) w(O) = w’(l) = 0. 

(5.4) 

In these tables, columns (a) and (b) are the eigenvalues calculated using 100 
and 10 steps, respectively, in the Runge-Kutta method. The run time for the 20 
eigenvalues of column (a) was approximately 30 set, while for column (b), it was 
less than 4 sec. In Table I, results are presented for boundary condition (i). 
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TABLE I 

First 20 Eigenvalues for We&r’s Equation with Boundary Condition (5.4) (i) 

111 

1 10.1511640305 10.1511640305 
2 39.7993930037 39.79939302 
3 89.1543424562 89.15434255 
4 158.2439617071 158.2439620 
5 247.0715002280 247.071501 
6 355.6377438064 355.637746 
7 483.9429592801 483.942965 
8 631.9872575754 631.98727 
9 799.7706915319 799.77074 

10 987.2932889272 987.29326 
11 1194.5550655004 1194.5549 
12 1421.5560307115 1421.5559 
13 1668.2961905247 1668.2961 
14 1934.7755488515 1934.7754 
15 2220.9941083433 2220.9940 
16 2526.9520600122 2526.9518 
17 2852.6488376921 2852.6486 
18 3 198.0850098354 3198.0847 
19 3563.2603879971 3563.2597 
20 3948.1749727202 3948.1751 

(4 04 

Comparing the results of (i) with those of Birkhoff and Fix [4], it may be seen 
that column (a) of Table I appears to be accurate to 14 significant figures, while 
column (b) is accurate to 12 figures initially, leveling out after about 10 eigenvalues 
to six significant figure accuracy. To confhm whether or not this six figure accuracy 
is maintained for higher eigenvalue, problem (ii) was investigated for such eigen- 
values. The results may be seen in Table II. 

Asymptotic formulas for this problem show that the results in Table II column (a) 
are accurate to 10 decimal places. As suspected from the results of Table I, the 
error when 10 steps are used in the Runge-Kutta procedure, appears to remain less 
than 10-3. The computation time per eigenvalues is less than in Table I as the 
relation (5.2) leads to a rapidly convergent iteration, often only one step being 
necessary. 

It may be that the optimum choice of the number of steps for this problem is 
between 10 and 100. Such a choice would give an acceptable accuracy, while 
taking a small computation time. One would think that 30 or 40 steps would give 
a combination of the above properties. 
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TABLE II 
Eigenvalues Corresponding to Highly Oscillatory Eigenfunctions 

of Weber’s Equation Satisfying Boundary Condition (5.4) (ii) 

(4 

100 97711.8842956852 
200 392813.0560529779 
300 885306.3153903790 
400 1575191.6632255727 
500 2462469.0988021103 
600 3547138.6223169501 
700 4829200.2341860869 
800 6308653.9339494741 
900 7985499.7216152999 

1000 9859737.5974535981 

(b) 

97711.8846 
392813.0561 
885306.3152 

1575191.6632 
2462469.0989 
3547138.6223 
4829200.2342 
6308653.9340 
7985499.7215 
9859737.5975 

This theme is pursued in a further example of this type, derived from Mathieu’s 
equation. Several authors have computed the eigenvalues of this problem. In 
Table III, the results obtained by the method of this section are given. 

Mathieu’s equation 
ws + {A - 2q cos 2x) w = 0, (5.5) 

defines a regular Sturm-Liouville system on the interval [0, n/2]. 
The number of eigenvalues that may be computed will depend on q as X may be 

less than 2 / q I. The eigenvalues for which X < 2 ( q [ may be computed using a 
combination of the Priifer and modified Pri.ifer equations, as in Section 6. The 
Sturm-Liouville system whose eigenvalues have been calculated is Eq. (5.5) 
with the boundary condition 

w(0) = w(n/2) = 0. (5.6) 

TABLE III 
Some Eigenvalues of Mathieu’s Equation Corresponding to Odd Eigenfunctions 

(4 = 1) (4 = 10) (4 = 25) (4 = 100) 

bn bn L L 

5 100.005050675 
10 400.001253135 
15 900.00055617 

100 40000.0000 
1000 4oooooO.oooooO 

a Not applicable. 

100.5067695 Notea Note” 
400.1253382 400.78419 Note@ 
900.0556195 900.34769 900.5836 

40000.00 40000.0 4OOoo.l 
4OOOoOO.0000 4oOOOOO.000 4OoOOOO.00 
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In Table III 50 steps were used. The results given agreed with the results for 
100 steps. The computing time for each eigenvalue was approximately 1 sec. 

The higher eigenvalues in Table III may be checked against the first two terms 
of the asymptotic series for h, namely, 

A, = 4n2 + (qyw) + O(l/n3). 

Eigenvalues for q = 1 may be compared with the results of Birkhoff and Fix [4]. 

6. POSITIVE TURNING POINT PROBLEMS 

ln this and the following section, turning-points of Sturm-Liouville systems are 
discussed. The class of turning point problems covered in this section is more 
adaptable to the present technique although it is the more difficult to treat by 
analytic methods. 

The division of turning point problems into positive and negative types corre- 
sponds to the two cases of rapidly oscillating eigenfunctions and exponentially 
decaying eigenfunctions, respectively. Thus, a positive turning point problem may 
be defined as a Sturm-Liouville system for which 

(i) 3 a set {xi ,..., xJ C [a, b] with k finite, such that hp(x,) = q(xJ, 
i = 1, 2 ,..., k, 

(ii) If {hp(x) - q(x)} < 0, for fixed h, on a subinterval (ai, bi) of [a, b] 
then 

bi - ai < 
1 l/Z 

- 
infzdai,bi) GW4 - 4(x)) I ) ’ 

(iii) h-4x) - q(x)) > 0 on some interval of finite length. 

Any other type of turning point will be a negative turning point. Examples of 
equations having positive turning points are 

WV + (Xx3 - 1) W = 0, for large A, x E [0, l] 

or 
W” + {p - 4q co? x} w = 0, for p = 4q > 0, x 6 [0, r/2]. 

For this type of problem, a combination of Prtifer and modified Priifer substi- 
tutions may be used to obtain the solution. In the regions for which Q(x) < K, 
the Priifer substitution is used, and for those in which Q(x) > K, the modified 
Priifer substitution is applied. Conversion between the two methods is facilitated 
by the results of Section 3. The value of the positive constant K is arbitrary, but 
one would normally choose K = 1. 
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As in the previous section, it is possible to define a second-order iteration to 
determine the zero of the function fm(h). The value of 0 changes slowly when 
{Xp(x) - q(x)) = O(l), but if this function is large, se/ax -/‘ p(x) sin2 0. Thus, 
an analogous formula to (5.2) may be established for this type of problem, namely, 

where Z = {x: x E [a, b], Xp(x) 3 q(x) + l}. 
Three examples of this type of problem are given below. Each example is derived 

from a separation of variables technique applied to either Laplace’s equation, 
or the reduced wave equation. Asymptotic methods may be used to determine 
implicit formulae for the eigenvalues (e.g., for parabolic cylinder functions see 
[12]) so that Pri.ifer methods appear to be the simplest approach to the positive 
turning point problem. 

For the first example, Mathieu’s equation is used. The problem is defined by 
Eqs. (5.5) and (5.6). For q > 0, the maximum value of 2q cos 2x is 2q so that a 
positive turning point problem exists if h is approximately equal to 2q. This turning 
point occurs at the origin and is of second order as (d/dx){h - 2q cos 2x) 13c=,, = 0. 
These eigenvalues will lead to solutions of the Sturm-Liouville system having 
approximately 2q112/r zeros in the interval (0, r/2). Results from this type of 
problem are given in Table IV. 

TABLE IV 

Some Eigenvalues of Mathieu’s Equation Corresponding to Odd Eigenfunctions 

(y = 100, 50 steps) 

m L 

(y = 1000, lOOsteps) 

m An 

(q = 10,000,200 steps) 

m hn 

8 216.12837 21 2090.7311 64 20068.869 
9 340.00030 22 2224.4649 65 20402.006 

10 412.79665 23 2313.8457 66 20162.004 
11 494.49811 67 21149.104 

The computation time per eigenvalue was approximately equal to n/50 set, 
where n is the number of steps. The results above agree with results obtained using 
1000 steps. 

The comparison equation in turning point analysis for a differential equation 
possessing a positive turning point of order two is the parabolic cylinder equation 

WI + {A + y2x2} w(x) = 0. (6-l) 
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The eigenvalues of this equation for all types of boundary condition are partic- 
ularly important. Sleeman in [12] obtained a relation between h and the zeros 
of both even and odd solutions of (6.1). The positive turning point case corresponds 
to large values of y and both small values of h and values of O(y). Such values of h 
and the number of the eigenvalue are given in Table V for various values of y, 
for the problem defined by (6.1) and the boundary condition 

w(0) = w(1) = 0. 

TABLE V 

Some Eigenvalues of the Parabolic Cylinder Equation 
Corresponding to Odd Eigenfunctions 

(y = 50, 100 steps) (y = 100,100 steps) (y = 200,200 steps) 

m 4n 111 An m &n 

9 121 SO785 17 219.893 32 17.4443 
10 279.0427 18 483.351 33 424.0872 
11 465.1663 

The details of the computation are the same as those for Table IV. 
A third problem both of physical interest yet having known solution in some 

cases is that of the Lame polynomials. In [7], a relation has been given for the 
eigenvalue h of Lame’s equation 

WV + {h - n(n + 1) kWz} w = 0, (6.2) 

snz being the Jacobian elliptic function of modulus k, when n is large. To obtain 
Lame polynomials as a solution of (6.2), n must be an integer. If k2 = 0.5, then 
in certain cases, the eigenvalue h is equal to +n(n + 1). These cases are as follows, 

(i) IZ = 4m, w’(0) = w’(K) = 0, (m + 1)th eigenvalue, 
(ii) n = 4m + 1, w’(O) = w(K) = 0, (m + 1)th eigenvalue, 
(iii) y1 = 4m + 2, w(0) = w’(K) = 0, (m + 1)th eigenvalue, 
(iv) n = 4m + 3, w(0) = w(K) = 0, (m + l)th eigenvalue. 

In the above, K is complete elliptic integral of the first kind. For large values of n, 
the results obtained by Prtifer methods appear to be accurate to 10 significant 
figures using 100 steps in the Runge-Kutta technique. The computation time for 
each eigenvalue is a little higher than in Table IV, as elliptic functions have to 
be evaluated. However, if several eigenvalues are calculated without changing k, 
then these values may be stored and the computation time is not significantly 
affected. 
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The method proposed here provides an apportunity to verify some of the results 
of [7] when k2 # 0.5. For example, if k2 = 0.25, then one would expect that the 
(m + 1)th eigenvalue of the problem 

n = 6m, w’(0) = w’(K) = 0, 

is approximately equal to $n(n + 1). Typical results for this problem are given in 
Table VI. 

TABLE VI 

Eigenvalues of Lam& Equation 
Corresponding to Even Lame 

Polynomials with Modulus 0.25 

Fl 

60 
120 
180 
900 

h 
- 

916.49 
3632.80 
8149.05 

202742.6 

The computation time for this problem involving 100 steps is as given in 
Table VI. 

These results agree with the theoretical result [7]. 

7. OTHER PROBLEMS 

More general turning point problems will have either two regions on each side 
of the turning point in which {hp(x) - q(x)} is negative or a side for which 
{hp(x) - q(x)} is positive and one for which it is negative. When either of these 
conditions occurs, we lose our estimates of the type (5.2) for &‘(A), and conse- 
quently, one should expect the method not to be as efficient for this type of problem. 

In Tables VII and VIII, one example of a turning point problem for moderately 
large negative values of (Ap - q) is given. The second example is a typical example 
of a regular Sturm-Liouville problem, in which all functions are of order one. 

Mathieu’s equation again provides an example, this time of a general turning 
point problem. The results given in Table VII may be compared with the results 
of [l]. The effects of having a finite region of absolute stability may be seen in this 
problem defined by Eq. (5.5) with boundary condition 

w’(0) = w’(42) = 0. (7.2) 
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TABLE VII 

Some Eigenvalues of Mathieu’s Equation 
Corresponding to Even Eigenfunctions 

4 

4 A2 4 
~___ 

(9 (ii) 6) (ii) 6) (ii) 

5 -5.800046 -5.800046 7.449110 7.449110 100.126369 100.126369 
10 -13.936980 -13.936980 7.717367 7.717370 100.506770 100.506770 
15 -22.513037 -22.513038 5.077962 5.077982 101.145203 101.145203 
20 -31.313419 -31.313391 1.154094 1.154275 102.048916 102.048916 
25 -40.256785 -40.256783 -3.522105 -3.522190 103.230205 103.230205 

Column (i) of Table VII was obtained using 50 steps, while column (ii) 
was obtained using 100 steps. Computation time per eigenvalue was 3 set 
for column (i) and 6 set for column (ii). Fifty is almost the smallest 
possible choice for the number of steps, and one may compare the results of 
columns (i) and (ii) for the first and sixth eigenvalues. In the former case, 
{A - 2q cos 2x) takes large negative values, while in the latter case, this expression 
is large and positive. The results for columns (i) and (ii) for the first eigenvalue, 
indicate that 50 steps leads to answers accurate to six significant figures, while 
the sixth eigenvalue has column (i) accurate to nine significant figures. 

Finally, in Table VIII, the first few eigenvalues of 

ws + {Ax - x”} w(x) = 0, (7.3a) 

w’(1) - w(1) = w’(2) - 4w(2) = 0, (7.3b) 

are computed. 

TABLE VIII 

First Five Eigenvalues for the Problem 
Defined by Eqs. (7.3) 

n AL 

1 2.00000000 
2 13.47421073 
3 33.63786454 
4 66.86980203 
5 113.37160420 
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Using 100 steps, the computing time for an eigenvalue was approximately 5 sec. 
The first of the results in Table VIII may be seen to agree with the theoretical value 
to eight decimal places. 

8. CONCLUDING REMARKS 

It has been shown in the earlier sections that the Priifer transformations lead 
to an efficient technique for numerical solution of regular Sturm-Liouville sytems. 
For problems in which only small numbers are involved, the Prtifer technique 
appears to be as efficient as the Rayleigh-Ritz method and more efficient than all 
other methods. However, the Priifer techniques become more efficient for successive 
eigenvalues, while the Rayleigh-Ritz method being an algebraic method becomes 
less efficient. 

The Priifer techniques used here seem readily adaptable to a problem related 
to the eigenvalue problem, namely, the problem of determing the zeros of the 
solution of a given differential equation. 

It would also be interesting to consider singular Sturm-Liouville problems on 
the halfline using the Priifer technique combined with an approximate value of 
the phase, obtained by the W.K.B. method at a finite distance on the real line. 

A third extension of the Priifer technique concerns the case in which q(x) is a 
step function or a piecewise continuous function. A generalization of the ideas 
of the Prtifer substitution will allow this case to be treated. 

However, the author feels the most interesting aspect of Priifer methods is that 
they may be applied immediately to the multiparameter problem. From the 
examples given here, it appears that Priifer methods will be sufficiently fast to 
enable one to solve multiparameter problems containing more than two parameters 
in a reasonable amount of computing time. 
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